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Abstract. We propose the reformulation of the Kauffman bracket invariant of the knot in 
terms of statistical mechanics of the m disordered b u s  model. This allows us to put the 
question of the determination of knot entropy (or of the probability of an arbitrary knot 
formation) in terms of the usual statistical mechanics. To demonstrate the possibilities of 
our approach we give wnstmnive estimation for the trivial knot formation probability for 
a long strongly contracted closed random path confined in a thin slit. We use the mean-field 
approximation far the free energy of the Pons system at the point of the transition from 
the paramagnetic phase to the spin-glass one. 

1. Introduction 

Let us consider the knot as being a closed path embedded in 3~ space. Objects of such 
type, having difiereni physicai naiure, piay an imporiani role in many branches of 
physics. Previously, some topological problems were investigated in connection with 
quantum field and string theories, ZD gravitation, polymer and DNA physics [ 1-31, 

There exist two classes of questions in the theory of such knot-like objects: to the 
first class we attribute problems of construction of topological invariants, definition 
of topological classes, etc; the second class deals with the problems of the determination 
of the entropy (or available volume in the phase space) for the path with fixed 
topological state. 

The first class of problems is quite well understood at present due to the very 
elegant results concerning construction of new topological invariants, such as Jones 
[4], and HOMFLY polynomials [5] and Kauffman bracket invariants [a]. On the other 
hand, the second class of problems mentioned above has been less well investigated. 
very ~ e w  resuits are Knuwn in inis neru; 

(i) The fact of asymptotical exponential decay of the probability of trivial knot 
formation with increase of path length has been established by rigorous theorem [7]. 

(ii) The probabilities of realization of various types of a knot, as well as some 
other related quantities, have been numerically calculated via computer simulation 
technique by Vologodskii et nJ [8,9] and followers [11-141 for randomly closed paths 
of strongly restricted length generated by the Monte Carlo method. The probabilities, 
P,, of formation of any arbitrary type of knot labelled here as, i, (the case i = 0 
corresponds to the trivial knot) were calculated as functions of the chain length (more 
precisely, of the effective number of segments, I ,  per chain): Pi = Pi(L/l). The case of 
an infinitely thin chain was considered first in [8]. The influence of excluded volume 
effects, i.e. of the chain thickness, d (in the units of the effective segment length), was 
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investigated in [IO]. In recent work [14] the simulation procedure was extended up to 
chains of lengths of order L / /  = 2000, and the exponential asymptote of the type 

(1) 

was obtained for trivial knot probability in the limit L+oo in accordance with the 
rigorous mathematical theorem [71. As to the characteristic length L(d/ / ) ,  it increases 
sharply with chain thickness. Combining the results of [8] and [14], we can write down 
the following phenomenological expression: 
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PO( LI 1, d/  0 - exp(-L/ L o ( d / l ) )  

L , ( d / l )  = Lo(0) exp(27dll). (2) 

(This formula was derived working with A V Vologodskii). Thus, the probability of 
any non-trivial knot formation, 1 - P o ,  grows rapidly from the swollen coil regime 
( d / l - l )  to the Gaussian coil regime ( d / / + O )  [13,14].t Moreover, this probability 
increases even more sharply in the course of polymer contraction, i.e. of the coil-to- 
globule transition [13]. 

(iii) Few simple models, such as random walk near the single obstacle and random 
walk in the lattice of obstacles, have been analytically investigated (see, for example 
[15] and references therein). 

In the present paper we propose to apply recent achievements in the theory of 
topological invariants, namely the construction of Kauffman bracket polynomials [6], 
for the investigation of the problem of knot entropy. 

We start with the usual construction of the topological invariant, based on the 
consideration of ZD projection of the knot. Let us recall that the topological state of 
the knot can be described completely by defining the passages of intersecting parts of 
the path on knot projection (if the knot is turned into the so-called general position, 
where, on the projection, only the pair intersections remain). 

Our approach is based on the following idea. The above-mentioned projection can 
be considered as a disordered ZD lattice. The passages can he characterized as the 
two-state Ising spin variables. Fixation of the topological state of the knot corresponds 
to the quenching of these spins. Since the Kauffman invariant can he presented as 
some special kind of partition function, we can reformulate our problem of knot 
entropy determination in terms of the thermodynamic properties of the disordered ZD 
Potts model. Using this formulation, we give in the present paper the constructive 
estimation of the trivial knot formation probability for the simplest physical system, 
namely, for a long closed random path confined in a thin slit. 

Our calculations are restricted in many ways. We will present and discuss them in 
the conclusions, hut just now we would like to emphasize that our paper is aimed at 
the presentation of topological problems as a matter of ordinary calculations widely 
used in statistical mechanics. This is why we adopt here only the simplest approxima- 
tions. Of course, all the steps of the calculation procedure can be improved, but this 
seems to he rather technical problem. 

The paper is organized as follows. In  section 2 we describe in brief the Kauffman 
construction of the Jones invariant and convert the Kauffman invariant of regular 
isotopy written in terms of our model, to the ZD Potts model (with some special number 
of spin states) in quenched disorder. In section 3 we apply replica-like conjectures for 

t We would like to emphasize that real polymer chains under the so-called @-conditions, perhaps, do not 
behave as the ideal one (with d =0) from a topological point of view: the second virital coefficient of 
segment-segment interaction vanishes at the 8-point, but the topological constraints nevertheless remain. 
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calculating the fraction of topologically trivial lattice knots in the mean-field approxima- 
tion using the usual replica-broken solution for Potts glass. 

2. Kauffmnn bracket invariant as the partition function of the Potts model io quenched 
disorder 

2.1. Formulation of the model 

To define the model, let us consider the ZD regular square lattice. We suppose that it 
represents the projection of our knot to the plane. The crossings on the projection are 
the lattice vertices; N, is their total number. Let us turn the lattice to the standard 
position, where each lattice bond forms angles *a/4 with respect to the x-axis (see 
figure 1). Then we have two kinds of crossings of the path projection in the vertices 
of our ZD lattice: 

and 

Let us attribute the values of the spin-like variables, bi, to each lattice vertex, i, 
(see below). Since the lattice as a whole is produced by one single path, i.e. this lattice 
corresponds to the knot (but not to the link), some special boundary conditions should 
he valid (see figure 1). In particular N can take odd values only. 

Of course there are ZN different realizations of the lattice. Now we would like to 
put the following physical question: what is the fraction P , ( N )  of unknotted paths on 
the lattice among all ZN possible paths? 

2.2. Kauffman representation of Jones invariants for knots and links 

To analyse the topological state of the path corresponding to a given set of ( b ; }  values 
we are going to use the Kauffman topological invariant. Let us start with a brief 

Figure 1. Lattice representation of 2D projection of the knot. 
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reproduction of the Kauffman construction of the topological invariant for knots and 
links [16,17]. 

For the knot plane projection with defined passages the following Reidemeister 
theorem is valid [17]: different knots (or links) are topologically isomorphic to each 
other if and only if they can be transformed continuously into one another by means 
of a sequence of simple local Reidemeister moves of types 1, 2 and 3-see figure 2. 
Two knots are called regular isotopic if they are isomorphic with respect to the last 
two types of moves (2 and 3); meanwhile, if they are isomorphic with respect to all 
types of Reidemeister moves, they are called ambient isotropic. As can be seen from 
figure 2, a Reidemeister move of type 1 leads to cusp creation on the knot projection. 
Thus for a real physical path in a thin slit we can restrict our consideration to the case 
of knots of regular isotropy. At the same time it is noteworthy that all real 3~ knots 
(links) are of ambient isotopy. 

A Grosberg and S Nechaev 

Figure 2. Reidemeister moves of types 1.2 and 3 

The Kauffman invariant is introduced as a certain partition function, which is the 
shost variables correspond s ~ m  ovpr the ret nf some ghost degrees of freedom: 

to two possible ways of vertex splitting: 

>< vertical 

and 

horizontal ‘v’ A 
To each state of spin, i.e. to each way of splitting, the following statistical weights 
should be attributed: 

0 A to vertical splitting and B to horizontal if the vertex is of kind ( a )  and, in 
contrast, 

0 B to vertical splitting and A to horizontal for the vertex of kind (Dj. 
For the system of N vertices there exist Z N  different microstates, each of them 

represents the set of splittings of all N vertices. Each microstate, S, corresponds tO 
lattice disintegration to the system of disjoint and non-self-intersecting circles. The 
number of circles for microstate S let us call ISI. 
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Then the original Kauffman polynomial can be written down as follows [17]: 
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(3) K = x dlSl-'A'Bj 
151 

where means summation over all possible microstates of the knot (or link) for an 
unchanged topological state of lattice realization, i and j = N - i are the numbers of 
vertices with weights A and B respectively in the given realization of microstate S. 

The partition function of the system described above represents the Laurent poly- 
nomial in A, B and d values. This function, for some special choice of relations among 
weights A, B and d, is the topological invariant of knots of regular isotopy. The proof, 
based on direct checking of invariance of K with respect to Reidemeister moves of 
types 2 and 3, shows [17] that A, B and d values obey the following relations: 

(4) B =A-' d=-A2-A-2 

and it means that the Kauffman invariant (3) can be represented as a Laurent polynomial 
in A. The case K = 1 corresponds to paths topologically isomorphic to a trivial ring. 

The state model and bracket polynomials introduced by Kauffman seem to be very 
special because they explore only very special geometrical rules such as summation 
over formal ghost degrees of freedom (splittings). Nevertheless, Kauffman showed 
also that bracket polynomials are deeply connected with Jones polynomials [4]. The 
substitution A = t-'14 converts thef [A]-Kauffman polymial of knots ofambient isotopy 
(which is invariant under all three Reidemeister moves) in A to the original Jones 
V(t)-polynomial in t [6,17]. 

To emphasize the broad region of applicability of the system described above, we 
would note the following fact. Recently, in [18,19] during investigation of 3~ quantum 
field theory with Chern-Simons action, a deep connection was established between 
expectation values of Wilson lines with non-trivial topology and the partition function 
(3) determining the polynomial invariant of the knot or link. 

23. Invariant for regular isotopic knots on square lattice and graph expansion for ZD 
Ports model 
First of all let us rewrite (3) with conditions (4) in more readable form. To do that we 
define the spin variables, bi, characterizing the natural disorder of the lattice, in the 
following way: 

+1 crossing of kind (a) 
crossing of kind (b) bi=[  -1 

meanwhile, for splittings we introduce 'ghost' spin variables, si, as follows: 
vertical splitting 
horizontal splitting. 

The A variable in equations (3) and (4) is arbitrary and can be considered as a complex 
one, therefore it would be better to write it in the following way: 

A = i exp(P) - A 2 - A A - 2 = 2 ~ ~ ~ h ( 2 P ) .  ( 5 )  
In terms of bj and si spins and p variable, the Kauffman invariant of regular isotopy 
reads 

K { b i ] =  1 [2 co~h(2p) ]~~ ' - '  exp 
IS) i 
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where the summation in the exponent runs over all N vertices and ICs, means the 
summation over possible states of all spins s,. 

We will show that the value K { b J  can be represented as the partition function of 
the Potts model on the square lattice with q-state spins, ( q  being given by q =  
(A2+ A-’)’= 4 cosh2(2p)) and with disordered interaction of nearest neighbours adsor- 
bed by b, variables. 

To explain the Potts representation of the Kauffman invariant (6), let us recall first 
of all that an arbitrary configuration of simultaneous splittings represents the so-called 
polygon decomposition of the lattice, which looks like a densely packed system of 
disjoint and non-self-intersecting circles. Each concrete polygon decomposition is 
determined completely by the polygons’ backbone-see figure 3. In turn, the configur- 
ation of backbones completely filling the lattice can be interpreted as the graph 
expansion for the high-temperature phase of the Potts system [20]. It is noteworthy 
that just this system was considered [21] in the context of the physics of ZD densely 
packed polymers with volume interactions, because it resembles the system of Euler 
walks completely filling the square lattice. 

A Grosberg and S Neehaev 

Fixure 3. Splitting of the knot projenion on the lattice and graph representation of 
microstate of ZD Potts model. 

After these empirical conjectures, we are going to show, that the systematization 
of the microstates for the Kauffman system is the same as for the Potts model on a 
disordered lattice (this idea was expressed for the first time in a slightly different way 
in [22]; see also [23]). To be more careful, we would like to use the following definitions: 

(i) Let us introduce the dual lattice, more precisely, one of the two (odd and even) 
possible diagonal dual lattices, as is shown in figure 3. Using the dual lattice, the 
disorder should be determined on the lattice edges (instead of the vertices as on the 
original lattice). The following definition is most suitable: 

if ( k l )  edge is vertical 
if ( k l )  edge is horizontal 



Algebraic invariants of knots and disordered Potts model 4665 

(or vice versa for another choice of dual lattice), i is the vertex of the original lattice, 
which belongs to the ( k l )  bond of the dual lattice. 

(ii) For the given splitting let us mark the centres of elementary cells in each 
polygon by dots and the edges of the dual lattice connecting these centres by solid 
lines (see figure 3). Since the edges of the dual lattice are in one-to-one correspondence 
with the vertices of the original lattice, the sum sibi in (6) can he transformed as 
follows: 

1 sibi = 1 sib,+ 1 sibi 
mar* nonmark 

hoer YC" horiz Ye" 

= sibi+ 1 sib,+ 1 sib,+ sibi 
mark mark nonmark nonmark 

horir Ye" horir Y e n  

= - E  h 1 - x  h i +  1 1 bw 
mark mark nonmark nonmsrk - 

= bkr - 1 h i .  (7) 
nonmark mark 

(iii) Let m, be the number of marked edges and C, be the number of connected 
components of the marked graph. Then the Euler relation reads 

(SI = 2C, + m, - N + x  (8) 

where x is the so-called Euler index. Equation (8) can he easily proved in the direct 
way. The ,y value depends on the topological class of the surface which can be covered 
by the given lattice, i.e. on the boundary conditions, and in the thermodynamic limit 
N > > l  it should be neglected, so that below we will suppose the usual equality 
[SI = 2C,+ m, - N. 

K{bkl)=exp[ - (P- im/Z)I  bkl (2cosh(2P))-"+" 

Using the conventions (i)-(iii), we can convert (6) to the form 

(9 )  

kI 1 
x 1 (2 c o ~ h ( 2 p ) ) ' ~ ~  n [2 cosh(2P) exp((2P -im)bM)] 
io1 mark 

where Z,Gl implies the summation over all possible configurations of marked graphs 
on the dual lattice. 

The expression ( 9 )  is one possible representation of the so-called dichromatic 
polynomial [20,24], closely connected to the high-temperature expansion of the parti- 
tion function of the Potts model. Let us introduce q-state Potts spins, uk, in the vertices, 
k, of the dual lattice and define spin interactions with the usual rules: 

1 if uk = ul, k and l are nearest neighbours 
otherwise. S ( G ,  U I ) =  [ 

Taking into account that on the square lattice the total number of edges is even, it is 
easy to derive the final expression for the Kauffman invariant of regular isotopy, K, 
in terms of the Potts model on a disordered dual lattice: 

K{bkl}=(2 cosh(2P))-""' 1 exp{1pbkl(46(uk, u l ) - l ) + i m  1 kI 6(uk, UI) 
1-1 kI 
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Equation (10) has the sense of the partition function of the ZD Potts model with 
random nearest-neighbour interactions, proportional to bkl = *I  with some probability 
distribution. At the same time the set of passages {bkJ completely determines the actual 
topological state of the weaved carpet for the definite boundary conditions. Therefore 
the topological problem of the determination of the knot invariant is reduced to the 
usual statistical problem of calculating the well-defined partition function in quenched 
disorder. From this point of view, we can attribute to the variable p in (10) the sense 
of reverse temperature. 

3. Replica broken mean-field solution for the fraction of unkootted paths 

Now, using the Potts representation of the Kauffman invariant of regular isotropy 
(lo), we would like to obtain the estimate of the simplest characteristic of the polymer 
chain knotting, namely the probability oftrivial knot formation. Since the knot topology 
is described by the configuration of the field {bkl},  our problem can be formulated in 
the following way: There exist a number of configurations of the {bkJ field correspond- 
ing to trivial knot topology. What is the fraction of these configurations among all 
possible ones? 

We can present only the upper estimation of this probability using the following 
chain of inequalities: 

1 
) 

probability of probability of 

( t;ta;t ) s (  
realization of knot 

with K ( p )  = 1 for all p 
probability of 

s realization of knot with 
K ( p )  = 1 for arbitrary p 
maximal probability 

s ( over all p for ). 
knot with K ( p ) =  1 

The first inequality is due to the fact that the Kauffman invariant of regular isotopy, 
K{bk l } ,  is not proved to be a full topological invariant. (In particular we do not know 
any examples of non-trivial knots with K ( p )  = 1.) The last probability in this chain 
can be evaluated in the usual way: 

(11 )  

( 

z o ( P ) = x  p{bki}a(K{bki,  P1-1) 
kI 

= 2  J D{bk&%bkl}S(ln K2{bk1 ,8 } )  (12) 

where ZkI or I D{ bxl}  means summation over all possible configurations of the 'crossings 
field' {bk l } ,  S function cuts out all states of the field {bkl}  with K ( p ) =  1 and p{bk!}  is 
the probability of realization of the given P(bkl} configuration. The freedom of choice 
of the concrete value of p we shall use later in accordance with the last inequality in 
the chain. 

The probability distribution p { b k l }  is determined physically by the process of knot 
formation. In the present paper we will restrict ourselves to the simplest suppositions, 
namely: 
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( I )  we will regard different crossings to be stastically independent of each other, 
i.e., p{bk~)=&~P(bk~); we assume this approximation to be valid for a contracted 
(globular) polymer; 

(2) we suppose each crossing to have two possible positions with the same probabil- 
ity equal to f, i.e. 

P(bk,)=f(S(bki-1)+6(bki+ 1)). (13) 

We assume this distribution to be valid for a polymer confined in a thin slit. 

order of integral evaluations, we can rewrite equation (12) in the following form: 
Using the usual integral representation for the scalar S function, and changing the 

Thus our problem is reduced to the calculation of the non-integer complex moments 
of the partition function, i.e. the values of the type (K2"{bk1, p}). An analogous problem 
of evaluation of non-integer moments is well known in spin-glass theory. Indeed, for 
the averaging of the free energy of the system, F, over a quenched random field, the 
replica m c K  IS wiaeiy appriea: - - - I I ~ ~  _-I..- .~ ~ - ~ I I - I  ~ ~ ~ . I - I  

(Z")-I ( F ) =  -lim- 
"-0  n 

where the moments of the partition function are usually averaged for positive integer 
values of n, and in the final expression analytical continuation to the case n = 0 is 
performed. 

We are going to act in a similar way for calculation of the non-integer complex 
moments of the partition function K{bkl}. In other words we would like to calculate 
the averaged value (K'")  for integer values of n. Then we put n = iy and calculate the 
remaining integral in (14) over y. Of course, this procedure in principle needs to be 
verified. Although our approach is no more curious than the replica approach, it would 
be extremely desirable to check the results of our calculations by means of computer 
simulations. Thus, the calculation of the value (IC"'), we replace with the calculation 
of the value (K'"), where n is an integer and positive. Averaging over independent 
bkl = * I ,  we obtain 

where we have used the identity exp{ia Z:-, 8 ( u ; ,  up)) = exp(2iam) = 1 (m = 

Now let us suppose formally the values of the number of spin states, q, and the 
reverse temperature, p, to be independent variables, i.e. for a moment let us break the 
connection q = 4  cosh2(2p), and suppose q to be an integer and p to be small (p2<< 
1, p > 0); N is odd. Then the exponent in the last expression can be expanded as a 

IO, *I, +2,. . .}). 
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power series in p. Keeping only the terms of order p2, we can rewrite (15), i.e. the 
averaged 2n replica partition function of Potts model, in the following standard form: 

( K 2 " )  = [Z ~osh(2~)]-~""" '  e x p [ ~ ( 2 p ~ n ~ + q - l ) ]  

A Grosberg nnd S Nechaev 

where spin indexes a, b change in the interval [0, q - I] and the connection between 
q and p variables can be restored, since q takes non-integer values. Thus 

J 2  = 16p2 

Jo= -8p2n (17) 
q =4+16p2>4.  

According to the results of [25], the spin-glass ordering takes place and the usual 
ferromagnetic phase makes no essential contribution to the free energy under the 
condition 

Jo q-2 -+-< 1. 
J 2  

Substituting (17) into (18) it is easy to see that for all p and n the last inequality is 
valid. Thus, we need keep only the first term in the exponent, corresponding to 
interaction of the replicas. 

Now we can follow the standard scheme of analysis of the replica partition function 
for the spin-glass-like system. For the Potts model this is exhaustively described in 
[25], and briefly presented in the appendix. For q > 4 (see equations (17)) there is the 
stable spin-glass solution and the transition point can be found from the condition 
Fpa,ama8ns,ic= F,,, Blall which gives the following relation between J and q at the 
transition point: 

2 ( 4  - 4)2 1 --= 
J 2  3(q2-18q+42)' 

Substituting (17) into (19) and restoring the initial connection between J and q, we 
find the self-consistent value of reverse temperature of spin-glass transition, &: 

p,r = 0.35. (20) 

This numerical value is consistent with the condition &<< 1 implied above in the 
course of expansion of (16). 

According to the results of [25], near the transition point the 2n replica free energy 
has the following form 

where 
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Using these equations, we can rewrite the expression for the averaged 2n replica 
Kau&nan invariant (K’“ )  in the vicinity of ptr (see appendix-equation (28)) as follows: 

(K’“)=exp{ Nn’[4(3+16p2)’ I n 4 + 2 p 2  16P 1 
-Nn 2(3+ 16p’)’ I n s + 2 l n  2 + p 2  [ 

Substituting (23) into (14) and remembering, that n = iy, we can easily evaluate the 
remaining Gaussian integral over y and obtain the result for Z,(p). As was mentioned 
above, to get the simplest estimation for the probability of trivial knot formation, we 
use the last inequality in the chain of equations (1 1) which corresponds to P = p,r: 

Zo(p,,) = exp(0.31 N). (24) 

4. Discussion 

The result of the calculations described in the previous section can be formulated as 
the following upper estimate for the probability of trivial knot formation: 

pus z0(Pt rWN = exp(-N/Nu) (25) 

where the ‘characteristic length’ No = 2.6. 
It is noteworthy that very close estimation can be obtained in the following simple 

way. Let us present our unknotted closed trajectory as the double folded one, i.e. in 
the form of a system of hairpins. Let us place now some of them along one of the 
lattice directions and then let us sew this system with the other hairpins along the 
orthogonal direction. It is clear that there are 2”’= exp( N/2.9) possible ways of such 
a sewing. The corresponding estimation for probability is of the order 2”2/2N- 
exp(-N/2.9). 

Let us recall that N is the number of crossings on the ZD knot projection. This 
value depends not only on the chain length L/I but also on the degree of compactness 
of the chain embedded in real 3~ space. One can give a simple estimation of N as a 
function of the chain length L/I using the standard concept of swelling ratio, a, adopted 
in polymer physicst (a2 = (R2)/Ll ,  where (R2) and LI are the mean square end-to-end 
distances for swollen or collapsed real chain and ideal Gaussian chain, respectively). 
Actually, in our notation N is the number of lattice vertices, i.e. the number of 
self-crossings on the chain trace on the ZD projection. For the Gaussian chain of length 
L its projection is also Gaussian and N(L)-(L/I) ln(L/l). In the most interesting 
case of polymer chain compression (for example in some cavity, external field or in 
poor solvent; such a compressed regime is the case for most biopoiymersj the term 

t Under any equilibrium conditions the value of a is determined by the chain length. L, ternp~rat~re. solvent 
quality, etc. As is well known, a - 1 for the Gaussian coil, i.e. for 8-solvent, a- L”“ for the swollen coil, 
i.e. for good solvent and a - L-’I6 for the globular chain, i.e. for poor solvent. 
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Nindcpcndcn,- M / R 2  should be added to N(L) due to the intersections between the 
uncorrelated parts of the polymer chain, R2 being the mean square gyration radius of 
the chain 3~ fold. On the other hand, in the swollen coil regime N(L) should be far 
smaller than that for the Gaussian regime. It can be estimated roughly as N(L)-  
( L l / r 2 ) Y ( L / I )  ln(L/l), where y <  1 is some critical exponent; its calculation is beyond 
our consideration here. Thus as a reasonable interpolation we use the following formula: 

A Grosberg and S Nechaeu 

N( L, R )  = (a-')'( L/I)  In( L/I )  + C2. (26) 

Substituting this result into (25) we obtain the following estimation for the dependency 
of Po probability on the swelling ratio: 

p0< exp(const(L/I)a-2)(L/I)'L''~"-''. (27) 

Equation (27) implies that the probability of chain knotting grows dramatically with 
the decrease of chain size from a swollen coil to a Gaussian coil and from a Gaussian 
coil to a globular chain. This concept is in a good qualitative agreement with the 
empirical equation (1) and with the data of computer simulations [13]. 

As was mentioned in the introduction, our calculations are oversimplified in the 
following ways: 

(1) The incompleteness of the Kauffman invariant makes impossible the estimation 
of accuracy of the results of our approach. We would like to emphasize only that in 
spite of the incompleteness of algebraic invariants they are much stronger than a 
Gaussian one and, moreover, Jones, HOMFLY and Kauffman invariants are even 
more powerful than Alexander ones. 

(2) The knot ZD projection was supposed to be the regular lattice; we believe that 
our approach can be generalized for the more realistic case of a disordered lattice 
using the results of the theory of the Potts model on such a lattice presented in [26]. 

(3) We have used the simplified version of the Kauffman invariant, namely the 
invariant of regular isotopy; the more realistic ambient isotopy needs consideration 
of the directed path [ 171 and can be reduced to the Potts model by analogy with the 
problem of Hamiltonian walks on a Manhattan lattice [21]. 

(4) We have neglected the Euler index ,y in ( 8 ) ,  supposing the thermodynamic 
limit. Investigations of boundary effects and the role of topology of the underlying 
lattice seem to be of interest. 

( 5 )  The supposition of independence of different crossings on the knot projection 
seems to be acceptable for the contracted globular polymer chain. The symmetry of 
the two types of crossing for each lattice vertex takes place for the chain confined in 
a thin slit, but it is easy to omit this requirement for the general case. 

(6) The procedure of analytic continuation of the averaged 2 n  replica Kauffman 
invariant to complex values of n needs to be verified. 

(7) We have estimated the probability that the Kauffman invariant, K ,  is equal to 
1 at one value of p only, namely at p = & for a trivial knot, K ,  should be equal to 
unity at all values of p simultaneously. 

(8) We have used the self-consistent field approximation for Z(p,.). This question 
should be analysed from the point of view of how this approximation perturbs the 
estimation, equation (24). 

We hope that it will he possible to improve our calculations, but let us stress once 
more that our main aim in the present paper was to convert the determination of knot 
entropy (or probability) into the problem of normal statistical mechanics. 
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Appendix 

Performing the Hubbard-Stratonovich transformation to the scalar fields Q:t and 
implying the homogeneous isotropic solution of the form Q:t = QpBSob, we can write 
the value ( I C 2 " )  (equation (16)) as follows: 

where 

In [25 ]  it was shown that the mean-field replica-symmetry-broken ansatz of 
equations (28) and (29) correspond to the first level of Parisi scheme for king spin 
glass and can be presented in the form 

if (a, p )  belong to the same group of m replicas 
otherwise. 

Q"@ = [ ," 
Substituting this ansatz into (16) the mean-field solution (equation (23)) can easily be 
found. 
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